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Abstract
In this paper, the Integrated Trapezoidal Collocation Method for solving third order linear and nonlinear
Integro-Differential Equations is presented. The highest derivative that appeared in the problems
considered is approximated by the Power series and Canonical polynomials which are constructed for the
problem considered. Thus, the assumed solution is then integrated successively to obtain the lower order
derivatives contained in the problem while the Trapezoidal rule is then applied on the first order
derivative to obtain the unknown function itself. These derivatives and the unknown function are then
substituted into the given problem and after simplification, the resulting equation is collocated at some
equally spaced interior points in the intervals of consideration, this leads to system of linear algebraic
equations which are then solved by ‘Maple 18’ package to obtain the values of the unknown constants
that are contained in the assumed solution. These values are then substituted back into the unknown
function to obtain the approximate solution required. Numerical experiments show that the method is
easy to apply and of high accuracy. From the results presented in Tables 1-3 and Figures 1-3, it is
observed that the two basis functions produce similar results with Chebyshev polynomials as basis
functions and that the method yields the desired accuracy when compared with the exact solutions.

Keywords: Integrated Collocation Method, Trapezoidal rule, Power series, Canonical polynomials,
Integro-Differential Equations.

1. Introduction.
The study of numerical solutions of Integro-Differential Equations and other functional equations have
been very pronounced in recent years. Integro-Differential Equations are either of Fredholm, Volterra or
Fredholm-Volterra type [1]. They occur in many fields of study, including fluid mechanics, biological
processes, chemical kinetics, engineering and economics [2]. Obtaining the solutions of
Integro-Differential Equations particularly nonlinear type in closed form is generally difficult, therefore,
the inevitability of the solutions in numeric or approximate form [3].
In recent time, many numerical analysts have examined the numerical solutions of third order
Integro-Differential Equations. Some of the methods applied include: Taylor Polynomial Solution [4],
Chebyshev Polynomial Approach [5], Block-pulse Functions and Operational Matrices [6],
Semi-Orthogonal Spline Wavelets Approximation [7] and Lagrange Interpolation Method [8]. Other
methods applied to solve Integro-Differential Equations are: Differential Transform Method (DTM) [9],
Sine-Cosine Wavelets Method [10] and Pseudo Spectra Method [11].
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For the purpose of our discussion, we shall consider the general third order linear and nonlinear
Integro-Differential Equation of the following types:
(i) Fredholm Integro-Differential Equation(FIDE)

3∑
i=0

Piy
(i)(x) +

∫ b

a

k(x, t)y(t)dt = f(x) (1)

(ii) Fredholm-Volterra Integro-Differential Equation(FVIDE)

3∑
i=0

Piy
(i)(x) +

∫ b

a

k(x, t)y(t)dt+

∫ x

a

k(x, t)y(t)dt = f(x) (2)

Here, equations (1) and (2) are subjected to the conditions

y(i)(a) = αj, i = 0, 1, 2, ..., (n− 1) (3)

and
y(i)(b) = βj, i = n, (n+ 1), (n+ 2), ..., (k − 1) (4)

where, Pi (i ≥ 0) are constants, k(x, t) and f(x) are given smooth (i.e. differentiable and integrable)
functions in [a, b], y(i)(x) denotes the ith derivative of y(x), αj : 0 ≤ j ≤ (n− 1), βj : n ≤ j ≤ (k − 1),
are real finite constants and y(x) is the unknown function to be determined.

2. Methodology and Techniques.
In this section, we applied the Integrated Trapezoidal Collocation Method to solve both linear and non-
linear third order Integro-Differential Equations.

To illustrate the basic concept of the method, we consider the following general non-linear system:

L[y(x)] = N [y(x)] +M [y(x)] + f(x) (5)

where, L, M are linear operators, N is a non-linear operator and f(x) is a given smooth function.

For non-linear problem, we employed the Taylor’s series linearization scheme to obtain a linear approx-
imation at t0 = 0.

2.1 Taylor’s series linearization scheme
Let

Gy = y(n)(t) (6)

be the non-linear expression contained in the problem considered, expanding the right hand side of equation
(6) in Taylor’s series around the point t0, we obtained

Gy ≡ y(t) + (t− t0)y′(t) +
(t− t0)2y′′(t)

2!
+

(t− t0)3y′′′(t)
3!

+ ...+
(t− t0)ny(n)(ξ)

n!
(7)
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Putting t0 = 0 in equation (7), we have

Gy ≡ y(t) + ty′(t) +
t2

2!
y′′(t) +

t3

3!
y′′′(t) + ...+

tn

n!
y(n)(ξ) (8)

Truncating equation (8) at the term containing y′(t), we have

Gy ≈ y(t) + ty′(t) (9)

Therefore, equation (9) is a linear approximation to equation (6).

2.2 Construction of Canonical Polynomials for kth Order IDEs

Consider the general kth order Integro-Differential Equation

P0y(x) + P1y
′(x) + P2y

′′(x) + ...+ Pky
(k)(x) +

∫ b

a

k(x, t)y(t)dt = f(x) (10)

We defined the operator

L ≡ Pk
dk

dxk
+ Pk−1

dk−1

dxk−1
+ ....+ P1

d

dx
+ P0 (11)

Let
LΦr(x) = xr (12)

Then
L[LΦr(x)] = Lxr (13)

Therefore,

Lxr ≡ Pk
dkxr

dxk
+ Pk−1

dk−1

dxk−1xr
+ ....+ P1

dxr

dx
+ P0x

r (14)

Lxr = Pkr(r−1)(r−2)...(r−k+1)xr−k +Pk−1r(r−1)(r−2)...(r−k+2)xr−k+1+ ...+P1rx
r−1+P0x

r (15)

This implies

L[LΦr(x)] = Pkr(r − 1)(r − 2)...(r − k + 1)xr−k + Pk−1r(r − 1)(r − 2)...(r − k + 2)xr−k+1

+...+ P1rx
r−1 + P0x

r

Suppose the inverse L−1 exists, then

L[LΦr(x)] = Pkr(r − 1)(r − 2)...(r − k + 1)LΦr−k(x) + Pk−1r(r − 1)(r − 2)...(r − k + 2)LΦr−k+1(x)

+...+ P1rLΦr−1(x) + P0LΦr(x)

xr = Pkr(r − 1)(r − 2)...(r − k + 1)Φr−k(x) + Pk−1r(r − 1)(r − 2)...(r − k + 2)Φr−k+1(x)

+...+ P1rΦr−1(x) + P0Φr(x)
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Therefore,

Φr(x) =
1

P0

[xr − Pkr(r − 1)(r − 2)...(r − k + 1)Φr−k(x)− Pk−1r(r − 1)(r − 2)...(r − k + 2)Φr−k+1(x)

−...− P1rΦr−1(x)], P0 6= 0 , r ≥ 0 (16a)

Let k = 3 in equation (16a), we have

Φr(x) =
1

P0

[xr − P3r(r − 1)(r − 2)Φr−3(x)− P2r(r − 1)Φr−2(x)− P1rΦr−1(x)], r ≥ 0 (16b)

The Canonical polynomials used in this work are obtained recursively using equation (16b).
2.3 Integrated Trapezoidal Collocation Method by Power Series Approach (ITCMPS)
In order to apply this method to solve equation (1) or (2) together with the initial/boundary conditions
given in equations (3) and (4), we assumed the power series approximation given by

y′′′(x) =
N∑
j=o

ajx
j (17)

and

y′′(x) =

∫ N∑
j=o

ajx
jdx+ c1 (18)

y′(x) =

∫ ∫ N∑
j=o

ajx
jdxdx+ c1x+ c2 (19)

Obtaining y(x) from equation (19), we write

y(x) =

∫
y′(x)dx+ c3 (20)

where, C3 is the constant of integration.

We applied the Trapezoidal rule to evaluate the integral part of equation (20), we write

yN,n(x) =
h

2
[f(x0) + 2(f(x1) + f(x2) + ...+ f(xn−1)) + f(xn)] + C3 (21)

where x0 = 0, xn = x0 + nh, such that (n ≥ 2) is an integer, f(xn) = y′(xn) and h = b−a
n

.
Thus, equations (17) – (21) are substituted into equation (10) by selecting n = 3, we obtained

P0yN,n(x)+P1[

∫ ∫ N∑
j=o

ajx
jdxdx+c1x+c2]+P2[

∫ N∑
j=o

ajx
jdx+c1]+P3

N∑
j=o

ajx
j+

∫ b

a

k(x, t)yN,n(t)dt = f(x)

(22)
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Expanding and simplifying equation (22), we obtained

P0[a0W
(3)
0 (x) + a1W

(3)
1 (x) + a2W

(3)
2 (x) + ....+ aNW

(3)
N (x)]

+P1[a0W
(2)
0 (x) + a1W

(2)
1 (x) + a2W

(2)
2 (x) + ....+ aNW

(2)
N (x)]

+P2[a0W
(1)
0 (x) + a1W

(1)
1 (x) + a2W

(1)
2 (x) + ....+ aNW

(1)
N (x)]

+P3[a0W
(0)
0 (x) + a1W

(0)
1 (x) + a2W

(0)
2 (x) + ....+ aNW

(0)
N (x)]

+C(X) + G1(X, t) = f(x) (23)

Here,

W
(3)
N (x) =

∫ ∫ ∫
xNdxdxdx (24)

W
(3)
0 (x) =

∫ ∫ ∫
dxdxdx (25)

G1(X, t) =

∫ b

a

k(x, t)yN,n(t)dt (26)

and C(X) is the sum of all the expressions containing ci : i = 1, 2, 3 and Pi : i = 0, 1, 2, 3. After evaluating
the terms involving integrals in equation (23) and with further simplification, we then collocated the left-
over at the point x = xk, we obtained

P0[a0W
(3)
0 (xk) + a1W

(3)
1 (xk) + a2W

(3)
2 (xk) + ....+ aNW

(3)
N (xk)]

+P1[a0W
(2)
0 (xk) + a1W

(2)
1 (xk) + a2W

(2)
2 (xk) + ....+ aNW

(2)
N (xk)]

+P2[a0W
(1)
0 (xk) + a1W

(1)
1 (xk) + a2W

(1)
2 (xk) + ....+ aNW

(1)
N (xk)]

+P3[a0W
(0)
0 (xk) + a1W

(0)
1 (xk) + a2W

(0)
2 (xk) + ....+ aNW

(0)
N (xk)]

+C(Xk) + G1(Xk, t) = f(xk) (27)

where,

xk = a+
(b− a)k

N + 2
, k = 1, 2, 3, ..., N + 1 (28)

Putting equation (28) into (27), we obtained (N+1) algebraic equations with (N+4) unknown constants.
Three extra equations are obtained using the initial/boundary conditions given in equations (3) and (4).
Altogether, we have (N+4) algebraic equations with (N+4) unknown constants. This system of (N+4)
algebraic linear equations is put in vector form as AX = b and then solved using Gaussian ‘Maple 18’
software to obtain the unknown constants aj (j ≥ 0) and c′is. These values are then substituted into our
assumed solution to obtain the approximate solution.

2.4 Integrated Trapezoidal Collocation Method by Canonical Polynomials (ITCMCP)
Again, we applied the Integrated Trapezoidal Collocation method using Canonical polynomials as our
basis function to solve equation (1) together with the initial/boundary conditions given in equations (3)
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and (4).
We assumed the approximation of the form

d3y

dx3
=

N∑
j=o

ajΦj(x) (29)

where, Φj(x) are Canonical polynomials obtained from equation (16).
Integrating equation (29) successively, we obtained and

d2y

dx2
=

∫ N∑
j=o

ajΦj(x)dx+ c1 (30)

y′(x) =

∫ ∫ N∑
j=o

ajΦj(x)dxdx+ c1x+ c2 (31)

Using equations (7) and (8), we obtained the approximation yN,n(x) to the unknown function y(x).
Thus, substituting equations (29) - (31) together with the approximation yN,n(x) into equation (10) by
selecting n = 3, we obtained

P0yN,n(x) + P1[

∫ ∫ N∑
j=o

ajΦj(x)dxdx+ c1x+ c2] + P2[

∫ N∑
j=o

ajΦj(x)dx+ c1]

+P3

N∑
j=o

ajΦj(x) +

∫ b

a

k(x, t)yN,n(t)dt = f(x) (32)

Expanding and simplifying equation (32), we obtained

P0[a0Φ
(3)
0 (x) + a1Φ

(3)
1 (x) + a2Φ

(3)
2 (x) + ....+ aNΦ

(3)
N (x)]

+P1[a0Φ
(2)
0 (x) + a1Φ

(2)
1 (x) + a2Φ

(2)
2 (x)....+ aNΦ

(2)
N (x)]

+P2[a0Φ
(1)
0 (x) + a1Φ

(1)
1 (x) + a2Φ

(1)
2 (x) + ....+ aNΦ

(1)
N (x)]

+P3[a0Φ
(0)
0 (x) + a1Φ

(0)
1 (x) + a2Φ

(0)
2 (x) + ....+ aNΦ

(0)
N (x)]

+C(X) + G2(X, t) = f(x) (33)

Here,

Φ
(3)
N (x) =

∫ ∫ ∫
ΦNdxdxdx (34)

Φ
(3)
0 (x) =

∫ ∫ ∫
Φ0dxdxdx (35)

G2(X, t) =

∫ b

a

k(x, t)yN,n(t)dt (36)

6
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After evaluating the terms involving integrals in equation (33) and with further simplification, we then
collocated the left-over at the point x = xk, we obtained

P0[a0Φ
(3)
0 (xk) + a1Φ

(3)
1 (xk) + a2Φ

(3)
2 (xk) + ....+ aNΦ

(3)
N (xk)]

+P1[a0Φ
(2)
0 (xk) + a1Φ

(2)
1 (xk) + a2Φ

(2)
2 (xk) + ....+ aNΦ

(2)
N (xk)]

+P2[a0Φ
(1)
0 (xk) + a1Φ

(1)
1 (xk) + a2Φ

(1)
2 (xk) + ....+ aNΦ

(1)
N (xk)]

+P3[a0Φ
(0)
0 (xk) + a1Φ

(0)
1 (xk) + a2Φ

(0)
2 (xk) + ....+ aNΦ

(0)
N (xk)]

+C(Xk) + G2(Xk, t) = f(xk) (37)

where,

xk = a+
(b− a)k

N + 2
, k = 1, 2, 3, ..., N + 1 (38)

Putting equation (38) into (37), we obtained (N+1) algebraic equations with (N+4) unknown constants.
Three extra equations are obtained using the initial/boundary conditions given in equations (3) and (4).
Altogether, we have (N+4) algebraic equations with (N+4) unknown constants. This system of (N+4)
algebraic linear equations is put in vector form as AX = b and then solved using Gaussian ‘Maple 18’
software to obtain the unknown constants aj (j ≥ 0) and c′is. These values are then substituted into our
assumed solution to obtain the approximate solution.

3.0 Error Analysis
In this section, we presented the error analysis and the asymptotic error estimate of the method.

Theorem: Let f(x) have two continuous derivatives on the interval a ≤ x ≤ b, then

ET
n (f) ≡

∫ b

a

f(x)dx− Tn(f) = −h
2(b− a)f ′′(cn)

12
(39)

for some a ≤ cn ≤ b [12, 13].
Following [12, 13, 14], the error in the Integrated Trapezoidal method with only a single subinterval, is
given by

ET
N,n(yN,n) ≡

∫ x0+h

x0

yN,n(x)dx− h

2
[yN,n(x0) + yN,n(x0 + h)] = −h

3

12
y′′N,n(c) (40)

where, N is the degree of the approximating polynomial and x0 ≤ c ≤ (x0 + h).
Recall that the general trapezoidal rule for yN,n(x) was obtained by dividing the entire interval into n-
subintervals and then applying the simple trapezoidal rule on each subinterval, hence, we have

IT (yN,n) =

∫ xn

x0

yN,n(x)dx

=

∫ x1

x0

yN,n(x)dx+

∫ x2

x1

yN,n(x)dx+ ...+

∫ xn

xn−1

yN,n(x)dx (41)

7
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IT (yN,n) ≈ h

2
[yN,n(x0) + yN,n(x1)] +

h

2
[yN,n(x1) + yN,n(x2)] + ...+

h

2
[yN,n(xn−1) + yN,n(xn)] (42)

where,

h =
xn − x0

n

xi = x0 + ih, i = 0, 1, ..., n.
Then, the error

ET
N,n(yN,n) ≡

∫ xn

x0

yN,n(x)dx− IT (yN,n) (43)

can be obtained by adding together the errors over the n-subintervals.
Since ∫ x0+h

x0

yN,n(x)dx− h

2
[yN,n(x0) + yN,n(x0 + h)] = −h

3

12
y′′N,n(c)

then on a general interval, [xi−1, xi], the error is∫ xi

xi−1

yN,n(x)dx− h

2
[yN,n(xi−1) + yN,n(xi)] = −h

3

12
y′′N,n(ci)

with xi−1 ≤ ci ≤ xi.
Then, the errors in all the n-subintervals put together, is given by

ET
N,n(yN,n) = −h

3

12
y′′N,n(c1)−

h3

12
y′′N,n(c2)− ...−

h3

12
y′′N,n(cn) (44)

= −h
3n

12
[
y′′N,n(c1) + y′′N,n(c2) + ...+ y′′N,n(cn)

n
]

= −h
3n

12
αn (45)

where, αn denotes [
y′′N,n(c1)+y′′N,n(c2)+...+y′′N,n(cn)

n
], such that

min
x0≤x≤xn

y′′N,n(x) ≤ αn ≤ max
x0≤x≤xn

y′′N,n(x)

Following [12, 15], we assumed that y′′N,n(x) is a continuous function, then there is a number kn in [x0, xn]
for which

y′′N,n(kn) = αn (46)

Therefore,

ET
N,n(yN,n) = −h

3nαn

12
= −h

3n

12
y′′N,n(kn)

= −h
2(xn − x0)

12
y′′N,n(kn) (47)

since

h =
xn − x0

n

8
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3.1 Asymptotic Error Estimate
Equation (44) is re-written as

ET
N,n(yN,n) = −h

2

12
[y′′N,n(c1)h+ y′′N,n(c2)h+ ...+ y′′N,n(cn)h] (48)

If

lim
n−→∞

[y′′N,n(c1)h+ y′′N,n(c2)h+ ...+ y′′N,n(cn)h] =

∫ xn

x0

y′′N,n(x)dx (49)

Then, ∫ xn

x0

y′′N,n(x)dx = y′N,n(xn)− y′N,n(x0) (50)

where,
y′′N,n(c1)h+ y′′N,n(c2)h+ ...+ y′′N,n(cn)h

is a Riemann sum for the integral given by equation (50) [12, 14]. Thus,

y′′N,n(c1)h+ y′′N,n(c2)h+ ...+ y′′N,n(cn)h ≈ y′N,n(xn)− y′N,n(x0) (51)

for large values of n.
Substituting equation (48) into equation (51), the asymptotic error estimate in the method is given by

ET
N,n(yN,n) ≈ −h

2

12
[y′N,n(xn)− y′N,n(x0)]

≡ ÊT
N,n(yN,n) (52)

4.0 Numerical Examples
In this section, we demonstrated the Integrated Trapezoidal Collocation Method by the two basis functions
considered in this paper to solve some linear and non-linear third order Integro-differential equations. The
results obtained by the two basis functions were compared with the results by Chebyshev polynomials.
Remark: We defined error used as

Error = |y(x)− yN,n(x)| : a ≤ x ≤ b for N = 1, 2, 3, ........

such that n ≥ 2 is an integer.
Example 1: Consider the third order pseudo-linear Fredholm Integro-Differential Equation

y′′′(x) = y′′(x)− x+

∫ 1

0

Sin(x)e−ty(t)dt (39)

subject to the boundary conditions
y(0) = 1, y′(0) = 0, y′(1) = 1.

The exact solution of this problem is

y(x) = 0.6799− 0.3200x− 0.5000x2 +
1

6
x3 − 0.0276ex + 0.3477(Sinx+ Cosx)

Remark: Using Canonical Polynomials as the bases functions, we compared equation (39) with equation
(16) and with slight modification, we have:
P0 = 1, P1 = 0, P2 = −1 and P3 = 1
Therefore, the first-few Canonical Polynomials for this problem are:

9
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when r = 0, Φ0(x) = 1
r = 1, Φ1(x) = x
r = 2, Φ2(x) = x2 + 2
r = 3, Φ3(x) = x3 + 6x− 6
r = 4, Φ4(x) = x4 + 12x2 − 24x+ 24

Example 2: Consider the third order linear Fredholm Integro-Differential Equation

y′′′(x) = Sin(x) + x+

∫ π
2

0

xty′(t)dt, 0 ≤ x ≤ 1 (40)

subject to the initial conditions
y(0) = 1, y′(0) = 0, y′′(0) = −1.

The exact solution of this problem is
y(x) = Cos(x).

Example 3: Consider the third order non-linear Fredholm-Volterra Integro-Differential Equation

y′′′(x) = f(x)− y(x) +

∫ 1

−1
(x2 + xt2)y2(t)dt+

∫ x

−1
y2(t)dt, 0 ≤ x ≤ 1 (41)

where,

f(x) =
47

14
− 17

9
x+

4

5
x2 + x3 +

1

2
x4 − 1

7
x7,

subject to the initial conditions

y(0) = −1, y′(0) = 0 and y′′(0) = 0.

The exact solution of this problem is
y(x) = x3 − 1.

Tables of Results
Table 1: Numerical Results for Example 1
x Exact Integrated Trapezoidal Collocation Method: n = 8

Power Series Canonical Polynomials Chebyshev Polynomials
N=4 Error N=4 Error N=4 Error

0.0 1.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
0.1 1.00324 1.00335 1.10E-4 1.00335 1.10E-4 1.00335 1.10E-4
0.2 1.01337 1.01385 4.80E-4 1.01385 4.80E-4 1.01385 4.80E-4
0.3 1.03107 1.03217 1.10E-3 1.03217 1.10E-3 1.03217 1.10E-3
0.4 1.05705 1.05901 1.96E-3 1.05901 1.96E-3 1.05901 1.96E-3
0.5 1.09206 1.09508 3.02E-3 1.09508 3.02E-3 1.09508 3.02E-3
0.6 1.13690 1.14111 4.21E-3 1.14111 4.21E-3 1.14111 4.21E-3
0.7 1.19242 1.19785 5.43E-3 1.19785 5.43E-3 1.19785 5.43E-3
0.8 1.25948 1.26606 6.58E-3 1.26606 6.58E-3 1.26606 6.58E-3
0.9 1.33901 1.34652 7.51E-3 1.34652 7.51E-3 1.34652 7.51E-3
1.0 1.43198 1.44003 8.05E-3 1.44003 8.05E-3 1.44003 8.05E-3

10

International Journal of Scientific & Engineering Research Volume 10, Issue 7, July-2019 
ISSN 2229-5518  

1735

IJSER © 2019 
http://www.ijser.org 

IJSER



Table 2: Numerical Results for Example 2
x Exact Integrated Trapezoidal Collocation Method: n = 8

Power Series Canonical Polynomials Chebyshev Polynomials
N=4 Error N=4 Error N=4 Error

0.0 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
0.1 0.999999 0.999946 5.3002E-5 0.999946 5.3000E-5 0.999958 4.100E-5
0.2 0.999995 0.999937 5.8000E-5 0.999937 5.8000E-5 0.999948 4.700E-5
0.3 0.999989 0.999917 7.2010E-5 0.999917 7.2000E-5 0.999936 5.300E-5
0.4 0.999980 0.999904 7.6000E-5 0.999904 7.6000E-5 0.999916 6.400E-5
0.5 0.999969 0.999882 8.7000E-5 0.999882 8.7000E-5 0.999887 8.200E-5
0.6 0.999956 0.999867 8.9020E-5 0.999867 8.9000E-5 0.999871 8.500E-5
0.7 0.999940 0.999847 9.3300E-5 0.999847 9.3300E-5 0.999853 8.700E-5
0.8 0.999921 0.999822 9.9000E-5 0.999822 9.9000E-5 0.999826 9.500E-5
0.9 0.999900 0.999480 4.2000E-4 0.999480 4.2000E-4 0.999280 6.200E-4
1.0 0.999877 0.999317 5.6000E-4 0.999317 5.6000E-4 0.999237 6.400E-4

Table 3: Numerical Results for Example 3
x Exact Integrated Trapezoidal Collocation Method: n = 8

Power Series Canonical Polynomials Chebyshev Polynomials
N=4 Error N=4 Error N=4 Error

0.0 -1.00000 -1.00000 0.00000 -1.00000 0.00000 -1.00000 0.000000
0.1 -0.99900 -0.99534 3.66E-3 -0.99686 2.14E-3 -0.99685 2.15E-3
0.2 -0.99200 -0.98716 4.84E-3 -0.98808 3.92E-3 -0.98806 3.94E-3
0.3 -0.97300 -0.96240 2.19E-3 -0.97097 2.03E-3 -0.97093 2.07E-3
0.4 -0.93600 -0.93792 1.92E-3 -0.93476 1.24E-3 -0.93472 1.28E-3
0.5 -0.87500 -0.85310 8.02E-3 -0.86884 6.16E-3 -0.86879 6.21E-3
0.6 -0.78400 -0.78310 9.00E-4 -0.78317 8.30E-4 -0.78317 8.30E-4
0.7 -0.65700 -0.63200 2.50E-4 -0.65681 1.90E-4 -0.65681 1.90E-4
0.8 -0.48800 -0.48816 1.60E-4 -0.48788 1.20E-4 -0.48788 1.20E-4
0.9 -0.27100 -0.26702 3.98E-3 -0.26869 2.31E-3 -0.26869 2.31E-3
1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Figure 1: The behaviour of the exact solution and the approximate solutions
using Power series, Canonical polynomials and Chebyshev polynomials
as basis functions at N = 4 and n = 8.
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Figure 2: The behaviour of the exact solution and the approximate solutions
using Power series, Canonical polynomials and Chebyshev polynomials
as basis functions at N = 4 and n = 8.
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Figure 3: The behaviour of the exact solution and the approximate solutions
using Power series, Canonical polynomials and Chebyshev polynomials
as basis functions at N = 4 and n = 8.

4.0 Discussion of Results and Conclusion
In this paper, we have shown that both the Power Series and Canonical Polynomial Integrated Trapezoidal
Collocation method can efficiently solve linear and non-linear third-order Integro-Differential Equations
with high accuracy. Moreover, the results obtained by Power series are in close agreement with the results
obtained by Canonical and Chebyshev Polynomials. In conclusion, the method yields the desired accuracy
when the results are compared with the exact solutions as shown in Tables 1-3 and Figures 1-3.
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